

1

The DarkSide-20k Experiment in 10 Minutes

Michael Poehlmann University of California, Davis

On behalf of the DarkSide Collaboration

New Perspectives 20 July 2020

The DarkSide Program

Dark matter direct detection using Ar two-phase TPCs

DS-50

2014 - present First UAr physics detector

DS-Proto-0 2019 - 2020

DS-Proto-1 2020 - 2021

DS-20k 2022 -

Two-phase Ar Time Projection Chamber (TPC)

Calorimetry + 3D position

Energy deposition in LAr produces **scintillation photons** and **free electrons**

S1: primary scintillation in LAr (energy estimator)

S2: secondary scintillation from electroluminescence of electrons in GAr

photodetectors

Why liquid argon?

Efficient scintillator

Scalable

Sensitive to dark matter over large mass range

Pulse shape discrimination (PSD)

f₉₀ S2 / S1

t [µs]

Why liquid argon?

Scalable

Efficient scintillator

Sensitive to WIMPs over large mass range

Pulse shape discrimination (PSD) f₉₀

S2 / S1

r10169e1147chSUM [a.u.] Nuclear recoil (NR) đ -10 -20 -30 $\int (S1) \le \int (S2)$ -40 50 100 150 200 0 t [µs] r11946e94chSUM [a.u.] Electronic recoil (ER) -10 $\int (S1) \ll \int (S2)$ -12 -14 50 100 150 0 200

S2 / S1

t [µs]

DS-20k Prototyping

DS-Proto-0

- 2019 2020
- 10 kg active mass
- Test bench for DS-20k technologies

DS-Proto-1

- 2020 2021
- 175 kg active mass
- Scaled-down version of DS-20k TPC

DS-Proto-0

DS-Proto-1

58 cm

DS-20k New Technologies

Sealed acrylic two-phase TPC filled with UAr

Custom cryogenic silicon photomultipliers (SiPMs)

Active AAr neutron veto detector

- 2% Gd doped acrylic panels
- Read out with SiPM

ProtoDUNE-like cryostat filled with AAr

DS-20k Projected Sensitivity

Fiducial mass: 20 tonnes Exposure: 10 years

How many events make a discovery?

...but only if < 0.1 background events expected

Cherenkov + S1 Background

Gamma from SiPMs produces Cherenkov light in TPC acrylic windows

Cherenkov increases f₉₀ of an event so that it mimics a DM signal

Event classes I. Cherenkov + single cluster in TPC II. Cherenkov + Ar-39 pileup event

Coincidence of Ar-39 decay within 200 ns of Cherenkov from a SiPM gamma

Before cuts:

 0.90 ± 0.01 (stat) events in ROI for 5 year exposure

S1NearbyMaxFrac (NMF) cut < 0.027 ± 0.002 (stat) events expected in ROI, sufficient for radioactivity budget Simulated Ar-39 Spectrum

Coincidence of Ar-39 decay within 200 ns of Cherenkov from a SiPM gamma

Before cuts: 0.90 ± 0.01 (stat) events in ROI for 5 year exposure

S1NearbyMaxFrac (NMF) cut

< 0.027 \pm 0.002 (stat) events expected in ROI, sufficient for radioactivity budget

 $f_{\rm NMF} = \frac{\text{S1 light in 5x5 tiles with most light}}{\text{Total S1 light}}$

S1NearbyMaxFrac Cut

- Ar-39 S1 XY light pattern sparse for events in fiducial volume
- Cherenkov light has localized XY distribution

S1 = 50 (Cherenkov in top window)

Coincidence of Ar-39 decay within 200 ns of Cherenkov from a SiPM gamma

f 200

Before cuts: 0.90 ± 0.01 (stat) events in ROI for 5 year exposure

S1NearbyMaxFrac (NMF) cut

< 0.027 ± 0.002 (stat) events expected in ROI, sufficient for radioactivity budget

12

Count 10³

10²

10

Coincidence of Ar-39 decay within 200 ns of Cherenkov from a SiPM gamma

Before cuts: 0.90 ± 0.01 (stat) events in ROI for 5 year exposure

S1NearbyMaxFrac (NMF) cut

< 0.027 \pm 0.002 (stat) events expected in ROI, sufficient for radioactivity budget

Coincidence of Ar-39 decay within 200 ns of Cherenkov from a SiPM gamma E 200

Before cuts: 0.90 ± 0.01 (stat) events in ROI for 5 year exposure

S1NearbyMaxFrac (NMF) cut

< 0.027 ± 0.002 (stat) events expected in ROI, sufficient for radioactivity budget

Summary

DarkSide-20k will be the most **sensitive dark matter experiment** ever built

- 7.4×10^{-48} cm² for 1 TeV/c² WIMPs for a 10 year run

Tests of DS-20k innovative design features **currently ongoing** with DS-Proto-0 and DS-Proto-1

S1NearbyMaxFrac cut reduces Cherenkov + S1 background to below required level

Questions?

Backup Slides

Backgrounds in DS-20k

DS-50 demonstrated Ar-39 activity in AAr

Neutron recoil backgrounds

- Cosmogenic
- Spontaneous (a,n) reactions

Electron recoil backgrounds

- Ar-39, Kr-85, and external gamma rays
- Cherenkov + S1

Backgrounds in DS-50

Coincidence of Ar-39 decay within 200 ns of Cherenkov from 2.61 MeV gamma

Before cuts: 0.90 ± 0.01 (stat) events in ROI for 5 year exposure

S1NearbyMaxFrac (NMF) cut

< 0.027 ± 0.002 (stat) events expected in ROI, sufficient for radioactivity budget

