Dark Matter-Electron Scattering in the DarkSide-50 Experiment

Michael Poehlmann University of California, Davis

APS Far West Section 9 October 2020

The DarkSide-50 Experiment

Dark matter direct detection using an Ar dual-phase TPC

2014 - present

Gran Sasso National Laboratory (LNGS), Italy

50 kg of underground argon

TPC inside 30 t liquid scintillator veto within a 1 kt water Cherenkov detector

D.M. Poehlmann | APS Far West Section | 9 October 2020

Dual-phase Ar Time Projection Chamber (TPC)

Calorimetry + 3D position

Energy deposition in LAr produces scintillation photons and free electrons

S1: primary scintillation in LAr (typically used as energy estimator)

S2: secondary scintillation from electroluminescence of electrons in gas pocket

S2-Only Analysis

S1 for a low-energy event may not be detectable

- no z position
- no NR/ER discrimination
- S2 is now energy estimator

S2 yield = 23±1 PE/e-

100% trigger efficiency at 1.3 e⁻

trigger: 2 PMTs firing within 100 ns

Recent improvements:

- increased statistics (+1.5x 2018 dataset)
- improved data selection

DarkSide-50 Calibrations

ER energy scale: ³⁷Ar decays throughout TPC (τ_{1/2} ~ 35 days)

NR energy scale: ²⁴¹Am¹³C and ²⁴¹AmBe sources

Recent improvements:

- detector effects (radial dependency, geometry)
- reduction of the overall systematic uncertainties

³⁷Ar calibration

DarkSide-50 Calibrations

ER energy scale: 37 Ar decays throughout TPC ($\tau_{_{1/2}} \sim 35$ days)

NR energy scale: ²⁴¹Am¹³C and ²⁴¹AmBe sources

Recent improvements:

- detector effects (radial dependency, geometry)
- reduction of the overall systematic uncertainties

D.M. Poehlmann | APS Far West Section | 9 October 2020

DarkSide-50 Backgrounds

Full simulation of radioactive components

- detector materials (²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co)
- intrinsic to target (³⁹Ar, ⁸⁵Kr)

Multivariate approach fits background components to data

 S1 single scatters, S1 multiple scatters, drift time

Improved background model:

- extended above 50 N
- more accurate pdfs, improved constraints on internals, new calibration

Phys. Rev. D 98, 102006 (2018)

Background ionization spectra

Dark Matter-Argon Interactions

DM-Electron Scattering

Model observable: differential ionization rate

events / target mass / exposure time

argon ionization form-factor

dark matter velocity distribution

dark matter formfactor (F_{DM})

Predicted DM-electron scattering rates

DM-Electron Scattering

Model observable: differential ionization rate

> events / target mass / exposure time

argon ionization form-factor

dark matter velocity distribution

dark matter form-factor (F_{DM})

90% CL Exclusion Limits

Binned profile likelihood method used to set upper limit on DM cross-section

Significant improvements over 2018 DS-50 limits expected... stay tuned!

Significant improvements expected

DarkSide: Phys. Rev. Lett. 121, 111303 (2018) XENON: Phys. Rev. Lett. 123, 251801 (2019)

Questions?

Backup Slides

DM-Electron Scattering

DM-Electron Scattering

$$\begin{split} &\frac{d\langle \sigma_{\rm ion}^{nl} v\rangle}{d\ln E_{\rm er}} = \frac{\overline{\sigma}_e}{8\,\mu_{\chi e}^2} \\ &\times \int dq\,q\,|f_{\rm ion}^{nl}(k',q)|^2\,|F_{\rm DM}(q)|^2\,\eta(v_{\rm min}), \end{split}$$

$$F_{\rm DM}(q) = \frac{m_{A'}{}^2 + \alpha^2 m_e{}^2}{m_{A'}{}^2 + q^2} \simeq \begin{cases} 1, & m_{A'} \gg \alpha m_e \\ \frac{\alpha^2 m_e{}^2}{q^2}, & m_{A'} \ll \alpha m_e \end{cases},$$

$$v_{
m min}(q,E_b^{nl},E_{
m er})=rac{|E_b^{nl}|+E_{
m er}}{q}+rac{q}{2m_\chi}$$

Why liquid argon?

Scalable

Efficient scintillator

Sensitive to WIMPs over large mass range

Pulse shape discrimination (PSD)

Why liquid argon?

Scalable

Efficient scintillator

Sensitive to WIMPs over large mass range

Pulse shape discrimination (PSD)

